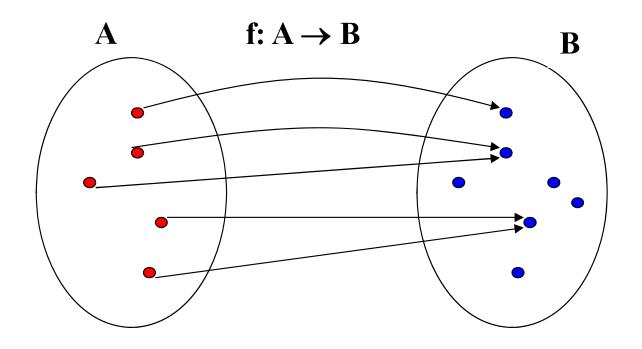
Discrete Mathematics

Functions II

Dr. Mohammad Salah Uddin Assistant Professor Department of CSE East West University, Bangladesh

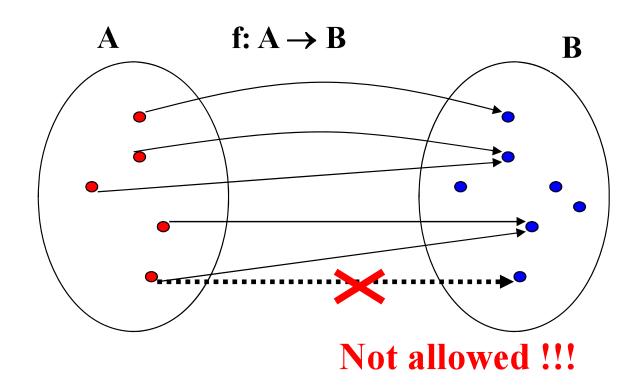
Functions

• <u>Definition</u>: Let A and B be two sets. A <u>function from A to B</u>, denoted $f: A \rightarrow B$, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.



Functions

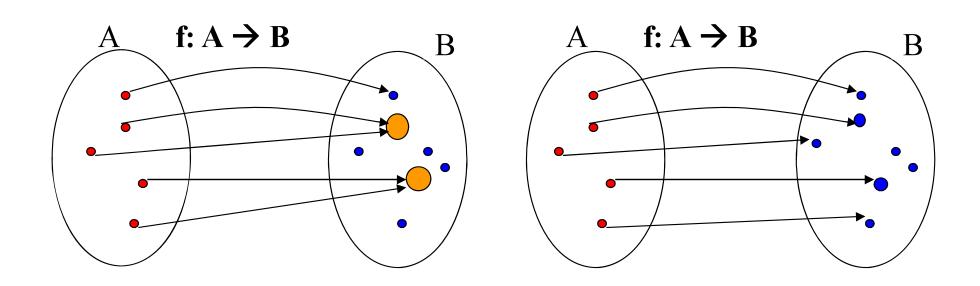
• <u>Definition</u>: Let A and B be two sets. A <u>function from A to B</u>, denoted $f: A \rightarrow B$, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.



Injective function

<u>Definition</u>: A function f is said to be **one-to-one**, **or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an **injection** if it is **one-to-one**.

Alternative: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.



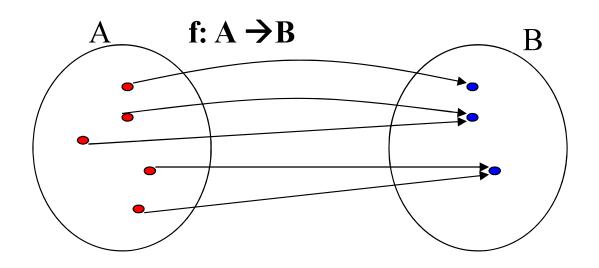
Not injective function

Injective function

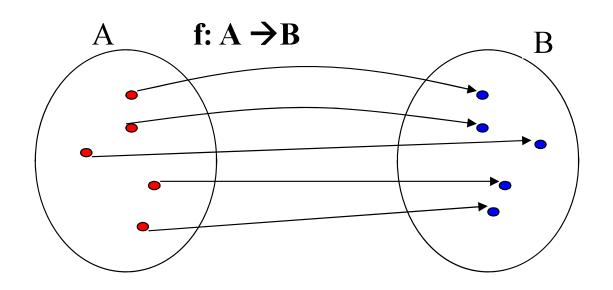
Surjective function

<u>Definition</u>: A function f from A to B is called **onto**, or **surjective**, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b.

Alternative: all co-domain elements are covered



Definition: A function f is called a bijection if it is both one-to-one (injection) and onto (surjection).



Example 1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
 - Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow b$
- Is f a bijection?
- ?

Example 1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
 - Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow b$
- Is f a bijection?
- Yes. It is both one-to-one and onto.

Example 2:

- Define g: W \rightarrow W (whole numbers), where $g(n) = \lfloor n/2 \rfloor$ (floor function).
 - $0 \rightarrow \lfloor 0/2 \rfloor = \lfloor 0 \rfloor = 0$
 - $1 \rightarrow \lfloor 1/2 \rfloor = \lfloor 1/2 \rfloor = 0$
 - $2 \rightarrow \lfloor 2/2 \rfloor = \lfloor 1 \rfloor = 1$
 - $3 \rightarrow \lfloor 3/2 \rfloor = \lfloor 3/2 \rfloor = 1$
- ...
- Is g a bijection?

Example 2:

- Define g: W \rightarrow W (whole numbers), where $g(n) = \lfloor n/2 \rfloor$ (floor function).
 - $0 \rightarrow \lfloor 0/2 \rfloor = \lfloor 0 \rfloor = 0$
 - $1 \rightarrow \lfloor 1/2 \rfloor = \lfloor 1/2 \rfloor = 0$
 - $2 \rightarrow \lfloor 2/2 \rfloor = \lfloor 1 \rfloor = 1$
 - $3 \rightarrow \lfloor 3/2 \rfloor = \lfloor 3/2 \rfloor = 1$
- •
- Is g a bijection?
 - No. g is onto but not 1-1 (g(0) = g(1) = 0 however 0 ≠ 1.

Theorem: Let f be a function f: $A \rightarrow A$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Assume

- → A is finite and f is one-to-one (injective)
- Is f an **onto function (surjection)**?

Theorem: Let f be a function f: A \rightarrow A from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Proof:

- → A is finite and f is one-to-one (injective)
- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have |A| different elements A points to. Since $f: A \rightarrow A$ the co-domain is covered thus the function is also a surjection (and a bijection)
- ← A is finite and f is an onto function
- Is the function one-to-one?

Theorem: Let f be a function f: $A \rightarrow A$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Proof:

- → A is finite and f is one-to-one (injective)
- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have |A| different elements A points to. Since $f: A \rightarrow A$ the co-domain is covered thus the function is also a surjection (and a bijection)

← A is finite and f is an onto function

- Is the function one-to-one?
- Yes. Every element maps to exactly one element and all elements in A are covered. Thus the mapping must be one-to-one

Theorem. Let f be a function from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Please note the above is not true when A is an infinite set.

• Example:

- $f: Z \rightarrow Z$, where f(z) = 2 * z.
- f is one-to-one but not onto.
 - $1 \rightarrow 2$
 - $2 \rightarrow 4$
 - $3 \rightarrow 6$
- 3 has no pre-image.

Functions on real numbers

Definition: Let f1 and f2 be functions from A to **R** (reals). Then f1 + f2 and f1 * f2 are also functions from A to **R** defined by

- (f1 + f2)(x) = f1(x) + f2(x)
- (f1 * f2)(x) = f1(x) * f2(x).

Examples:

- Assume
 - f1(x) = x 1
 - $f2(x) = x^3 + 1$

then

- $(f1 + f2)(x) = x^3 + x$
- $(f1 * f2)(x) = x^4 x^3 + x 1$.

Definition: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if f(x) > f(y) whenever x > y and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Example:

• Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x - 1. Is it increasing?

Definition: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if f(x) > f(y) whenever x > y and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Example:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1. Is it increasing?
- Proof.

For x>y holds 2x > 2y and subsequently 2x-1 > 2y-1Thus g is strictly increasing.

Definition: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if f(x) > f(y) whenever x > y and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one.

Why?

Definition: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if f(x) > f(y) whenever x > y and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one.

Why?

One-to-one function: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$.

Identity function

<u>Definition</u>: Let A be a set. The **identity function** on A is the function i_A : $A \rightarrow A$ where $i_A(x) = x$.

Example:

• Let $A = \{1,2,3\}$

Then:

• $i_A(1) = ?$

Identity function

<u>Definition</u>: Let A be a set. The **identity function** on A is the function $i_A: A \rightarrow A$ where $i_A(x) = x$.

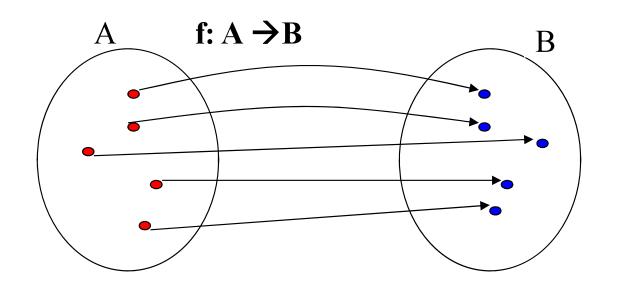
Example:

• Let $A = \{1,2,3\}$

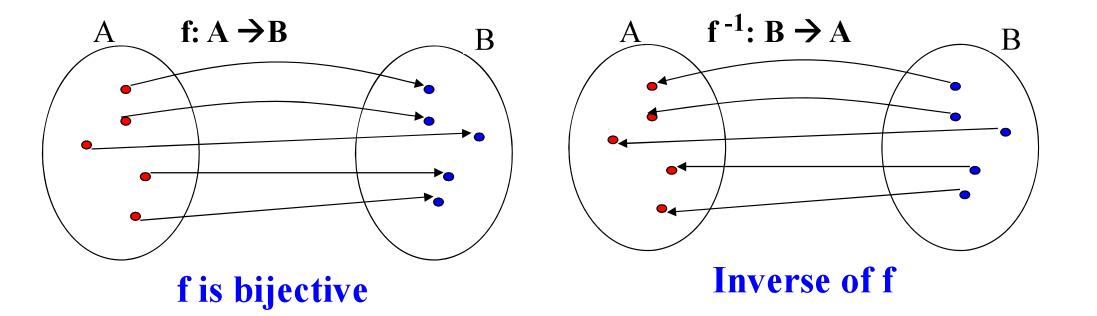
Then:

- $i_A(1) = 1$
- $i_A(2) = 2$
- $i_A(3) = 3$.

Definition: A function f is called a bijection if it is both one-to-one and onto.



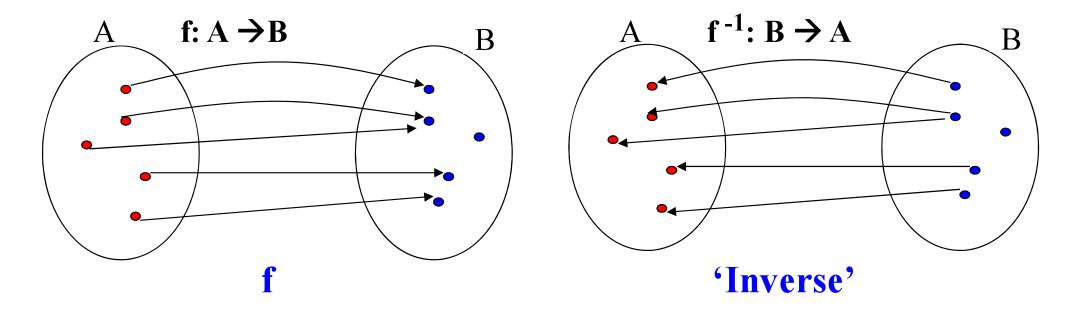
Definition: Let f be a **bijection** from set A to set B. The **inverse function of f** is the function that assigns to an element b from B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$, when f(a) = b. If the inverse function of f exists, f is called **invertible.**



Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not one-to-one:

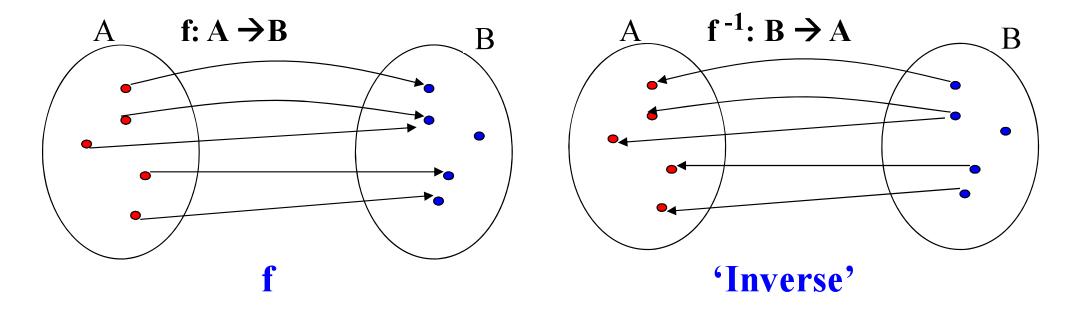
?



Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not one-to-one:

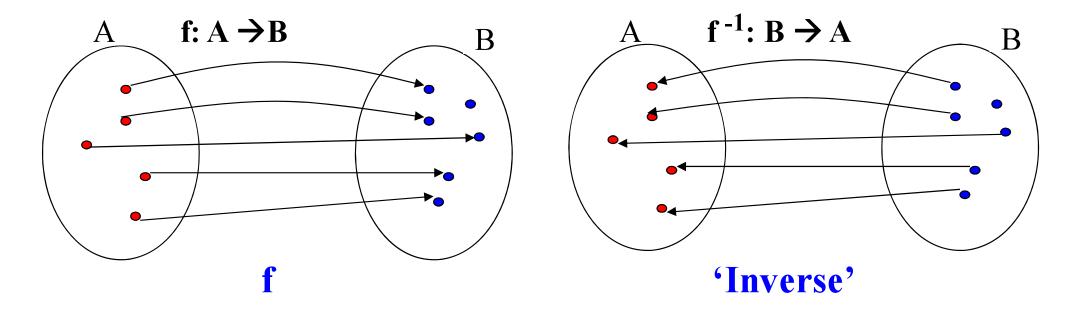
Inverse is not a function. One element of B is mapped to two different elements.



Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not onto:

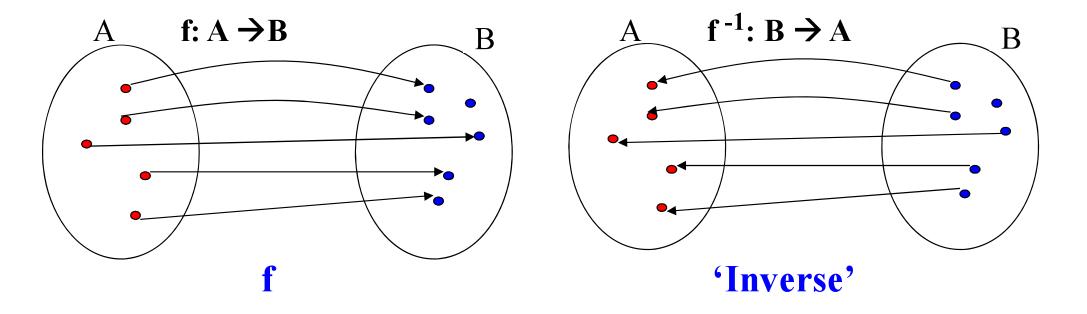
?



Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not onto:

Inverse is not a function. One element of B is not assigned any value in B.



Example 1:

• Let $A = \{1,2,3\}$ and i A be the identity function

•
$$i_A(1) = 1$$
 $i_A^{-1}(1) = 1$
• $i_A(2) = 2$ $i_A^{-1}(2) = 2$
• $i_A(3) = 3$ $i_A^{-1}(3) = 3$

• Therefore, the inverse function of i_A is i_A.

Example 2:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Example 2:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 \implies y + 1 = 2x$$

=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

•
$$g(3) = ...$$

Example 2:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 \implies y + 1 = 2x$$

=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

- g(3) = 2*3 1 = 5
- $g^{-1}(5) =$

Example 2:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 \implies y + 1 = 2x$$

=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

- g(3) = 2*3 1 = 5
- $\mathbf{g}^{-1}(5) = (5+1)/2 = 3$
- g(10) =

Example 2:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 \implies y + 1 = 2x$$

=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

- g(3) = 2*3 1 = 5
- $\mathbf{g}^{-1}(5) = (5+1)/2 = 3$
- g(10) = 2*10 1 = 19
- $g^{-1}(19) =$

Example 2:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 \implies y + 1 = 2x$$

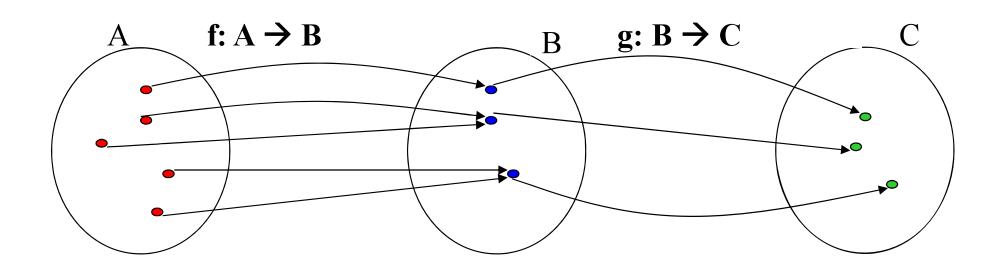
=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

- g(3) = 2*3 1 = 5
- $g^{-1}(5) = (5+1)/2 = 3$
- g(10) = 2*10 1 = 19
- $g^{-1}(19) = (19+1)/2 = 10$.

Definition: Let f be a function from set A to set B and let g be a function from set B to set C. The **composition of the functions** g and f, denoted by g O f is defined by

•
$$(g \circ f)(a) = g(f(a))$$
.



Example 1:

• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$g: A \to A$$

$$1 \rightarrow 3$$

$$2 \rightarrow 1$$

$$3 \rightarrow 2$$

$$f: A \rightarrow B$$

$$1 \rightarrow b$$

$$2 \rightarrow a$$

$$3 \rightarrow d$$

Example 1:

• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$g: A \to A$$

$$1 \rightarrow 3$$

$$2 \rightarrow 1$$

$$3 \rightarrow 2$$

$$f: A \rightarrow B$$

$$1 \rightarrow b$$

$$2 \rightarrow a$$

$$3 \rightarrow d$$

- $1 \rightarrow d$
- 2 →

Example 1:

• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$g: A \to A$$

$$1 \rightarrow 3$$

$$2 \rightarrow 1$$

$$3 \rightarrow 2$$

$$f: A \rightarrow B$$

$$1 \rightarrow b$$

$$2 \rightarrow a$$

$$3 \rightarrow d$$

- $1 \rightarrow d$
- $2 \rightarrow b$
- 3 →

Example 1:

• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$g: A \to A$$
,

$$1 \rightarrow 3$$

$$2 \rightarrow 1$$

$$3 \rightarrow 2$$

$$f: A \rightarrow B$$

$$1 \rightarrow b$$

$$2 \rightarrow a$$

$$3 \rightarrow d$$

- $1 \rightarrow d$
- $2 \rightarrow b$
- $3 \rightarrow a$

Example 2:

- Let f and g be two functions from Z to Z, where
- f(x) = 2x and $g(x) = x^2$.
- $f \circ g : Z \to Z$
- $(f \circ g)(x) = f(g(x))$ $= f(x^2)$ $= 2(x^2)$
- $g \circ f: Z \to Z$
- $\bullet \quad (g \circ f)(x) = ?$

Example 2:

- Let f and g be two functions from Z to Z, where
- f(x) = 2x and $g(x) = x^2$.
- $f \circ g : Z \to Z$

•
$$(f \circ g)(x) = f(g(x))$$

= $f(x^2)$
= $2(x^2)$

• $g \circ f: Z \to Z$

•
$$(g \circ f)(x) = g(f(x))$$

= $g(2x)$
= $(2x)^2$ Note that the order of the function composition matters

$$= 4x^2$$

Example 3:

- $(f \circ f^{-1})(x) = x \text{ and } (f^{-1} \circ f)(x) = x, \text{ for all } x.$
- Let $f : \mathbf{R} \to \mathbf{R}$, where f(x) = 2x 1 and $f^{-1}(x) = (x+1)/2$.

• (f O f⁻¹)(x)=
$$f(f^{-1}(x))$$

= $f((x+1)/2)$
= $2((x+1)/2) - 1$
= $(x+1) - 1$
= x

Example 3:

- $(f \circ f^{-1})(x) = x \text{ and } (f^{-1} \circ f)(x) = x, \text{ for all } x.$
- Let $f: \mathbb{R} \to \mathbb{R}$, where f(x) = 2x 1 and $f^{-1}(x) = (x+1)/2$.

• Let
$$f: \mathbf{R} \to \mathbf{R}$$
, where $f(x) = 2x - 1$ and $f^{-1}(x) = (x+1)/2$.
• $(f \circ f^{-1})(x) = f(f^{-1}(x))$
 $= f((x+1)/2)$
 $= (x+1) - 1$
 $= x$
• $(f^{-1} \circ f)(x) = f^{-1}(f(x))$
 $= f^{-1}(2x - 1)$
 $= (2x)/2$
 $= x$

Some functions

Definitions:

- The floor function assigns a real number x the largest integer that is less than or equal to x. The floor function is denoted by $\lfloor x \rfloor$.
- The **ceiling function** assigns to the real number x the smallest integer that is greater than or equal to x. The ceiling function is denoted by $\lceil x \rceil$.

Other important functions:

• Factorials: n! = n(n-1) such that 1! = 1