Propositional Logic, Discrete Mathematics

Dr. Mohammad Salah Uddin

Associate Professor Dept. of CSE East West University

October 30, 2024

Propositional Logic

- Propositional logic is a branch of logic that deals with propositions, which are statements that are either true or false.
- A proposition is a statement or sentence, that is either true or false.
- A proposition is denoted by letters such as p, q, and r.
- Example of propositions:
 - \square p: "It is raining."
 - \Box q: "The sky is clear."
 - s: "The instructor of Discrete mathematics course is Dr. Mohammad Salah Uddin."
 - □ d: "Dhaka is the capital city of Canada."

Why a Question is Not a Proposition

- A proposition is a declarative sentence that is either **true** or **false**.
- Example of propositions:
 - "The sky is cloudy." (This can be evaluated as True or False)
 - \Box "2 + 2 = 4." (True statement)
- A question cannot be a proposition because it does not have a truth value.
- Example of a question:
 - □ "What is the time?" (Cannot be classified as True or False)
 - □ "Are you coming?" (This is an inquiry, not a statement that can be evaluated)
- Only declarative sentences with definitive truth values qualify as propositions.

Non-Propositions

- A statement with variables, like 2x + 3 = 8, is **not a proposition** because its truth value depends on the value of x.
- Example of a non-proposition:

$$2x + 3 = 8$$

• When x = 2.5, the equation becomes:

$$2(2.5) + 3 = 8$$

This can now be evaluated as true, making it a proposition.

Logical Connectives: Definition and Explanation

- Logical Connectives are used to connect propositions (statements that can either be true or false) to form new compound propositions.
- The truth value of the compound proposition depends on the truth values of elementary propositions and the logical connective that link them.
- There are six main types of logical connectives:
 - 1. Negation (\neg)
 - 2. Conjunction (∧)
 - 3. **Disjunction** (∨)
 - 4. Implication (\rightarrow)
 - 5. Biconditional (\leftrightarrow)
 - 6. XOR: Exclusive OR (⊕)

1. Negation (\neg)

- The **negation** of a proposition p, denoted $\neg p$, means "not p."
- It reverses the truth value of the proposition.
- If p is true, then $\neg p$ is false; if p is false, then $\neg p$ is true.

Example:

- p: "It is raining."
- $\neg p$: "It is not raining."

Truth Table of Negation

Description: The negation of a proposition P, denoted as $\neg P$, is true when P is false and false when P is true. This table illustrates the relationship between a proposition and its negation.

Р	$\neg P$
True	False
False	True

2. Conjunction (\land)

- The **conjunction** of two propositions p and q, denoted $p \wedge q$, means "p and q."
- The conjunction is true if and only if both p and q are true.
- If either p or q is false, then $p \land q$ is false.

Example:

- p: "It is raining."
- q: "The sky is cloudy."
- $p \wedge q$: "It is raining and the sky is cloudy."

Conjunction (AND)

Р	Q	$P \wedge Q$
True	True	True
True	False	False
False	True	False
False	False	False

3. Disjunction (\vee)

- The disjunction of two propositions p and q, denoted p ∨ q, means "p or q."
- The disjunction is true if either p or q is true, or both are true.
- It is only false if both p and q are false.

Example:

- p: "It is raining."
- *q*: "The sky is cloudy."
- $p \lor q$: "It is raining or the sky is cloudy."



Disjunction (OR)

Р	Q	$P \lor Q$
True	True	True
True	False	True
False	True	True
False	False	False

4. Implication (\rightarrow)

- The **implication** $p \rightarrow q$ is read as "if p, then q."
- It means that if *p* is true, then *q* must also be true for the implication to be true.
- The implication is false only if *p* is true and *q* is false. In all other cases, it is true.

Example:

- p: "It is raining."
- *q*: "The road is wet."
- $p \rightarrow q$: "If it is raining, then the road is wet."

Implication (IF...THEN)

P	Q	P o Q
True	True	True
True	False	False
False	True	True
False	False	True

Hypothesis and Conclusion in Implication

In logic, an implication is expressed as $P \rightarrow Q$, where:

- **Hypothesis:** The statement *P* is known as the hypothesis. It represents the condition that must be satisfied.
- **Conclusion:** The statement *Q* is known as the conclusion. It represents the outcome that follows if the hypothesis is true.

Example:

If P is "It is raining," and Q is "The road is wet," then:

P o Q translates to "If it is raining, then the road is wet."

5. Bi-conditional (\leftrightarrow)

- The **biconditional** $p \leftrightarrow q$ is read as "p if and only if q."
- It means that p and q must either both be true or both be false for the biconditional to be true.
- If p and q have different truth values, the bi-conditional is false.

Example:

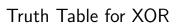
- **p**: "The light is on."
- *q*: "The switch is up."
- $p \leftrightarrow q$: "The light is on if and only if the switch is up."

Bi-conditional (IF AND ONLY IF)

Р	Q	$P\leftrightarrow Q$
True	True	True
True	False	False
False	True	False
False	False	True

- XOR (exclusive or) is a logical connective that outputs true if exactly one of the inputs is true, but not both.
- Denoted by: $p \oplus q$
- Can be represented by the logical expression:

$$p \oplus q = (p \lor q) \land \neg (p \land q)$$



р	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

In XOR, two truth values are not agree.

Example of XOR

- Let *p*: "It is raining."
- Let *q*: "The sun is shining."
- $p \oplus q$: "It is raining or the sun is shining, but not both."
- lacktriangle This is true only if one of p or q is true, but not both.

Building Compound Propositions

- Using logical connectives, we can combine simple propositions to form compound propositions.
- The truth value of the compound proposition is determined by the truth values of the simple propositions and the logical connectives used.

Constructing Truth Table: $(p \lor q) \land \neg r$

р	q	r	$\neg r$	$p \lor q$	$(p \lor q) \land \neg r$
Т	Т	Т	F	Т	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	Т	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	F
F	Т	F	Т	Т	Т
F	F	Т	F	F	F
F	F	F	Т	F	F

Constructing a Truth Table (cont.)

Let's create a truth table for the following compound proposition:

$$(p o q) \leftrightarrow (\neg p \lor q)$$

Where:

- p: Proposition 1
- q: Proposition 2

Logical Connectives:

- lacktriangleright ightarrow is the implication (if-then): False only when the first is true and the second is false.
- ↔ is the biconditional (if and only if): True when both propositions are either true or false.
- ¬ is the NOT operator.
- ∨ is the OR operator.

Constructing a Truth Table (cont.)

р	q	$\neg p$	p o q	$\neg p \lor q$	$(p ightarrow q) \leftrightarrow (\lnot p \lor q)$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

Explanation:

- Begin by listing all possible truth values for p and q.
- Calculate $\neg p$ (NOT p).
- Determine $p \rightarrow q$ (implication from p to q).
- Compute $\neg p \lor q$.
- Finally, evaluate the biconditional statement $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$, comparing the truth values of the two expressions.

In this case, the compound proposition is true for all possible combinations of p and q.

XOR Truth Table

Consider the compound proposition:

$$p \oplus q$$

Where:

 \blacksquare \oplus is XOR, which is true only when exactly one of p or q is true.

р	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Explanation:

■ XOR is true only when *p* and *q* have different truth values (one true and one false).

Complex Proposition

Let's consider a more complex proposition:

$$(p \vee \neg q) \wedge (q \rightarrow p)$$

Where:

■ V: OR

■ ¬: NOT

■ ∧: AND

 \blacksquare \rightarrow : Implication

p	q	$\neg q$	$p \lor \neg q$	q o p	$(p \lor \lnot q) \land (q \to p)$
Т	Т	F	Т	Т	Т
Т	F	Т	Т	Т	Т
F	Т	F	F	F	F
F	F	Т	Т	Т	Т

EAST WEST WHIVERSITY

Tautology, Contradiction, and Contingency

Tautology:

A proposition that is always true, regardless of the truth values of the individual propositions involved.

Example:

$$p \vee \neg p$$

This is true whether p is true or false.

Contradiction:

A proposition that is always false, no matter what the truth values of the individual propositions are.

Example:

$$p \wedge \neg p$$

This is false for all values of p.

Contingency:

• A proposition that can be either true or false depending on the 26 truth values of the individual propositions involved.

Computer Representation of True and False

In Boolean Logic:

- Computers represent logical values using bits (binary digits).
- **True** is represented as **1**.
- False is represented as 0.

In Programming Languages:

- Most programming languages use these binary values to represent Boolean conditions.
- Example in C/C++:
 - □ true is equivalent to 1.
 - \square false is equivalent to $\mathbf{0}$.

Performing bitwise operations

AND operation (x&y):

0110
&1001
0000

OR operation (x|y):

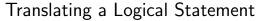
$$0110 \\ |1001 \\ \hline 1111$$

XOR operation $(x \oplus y)$:

$$0110 \\ \oplus 1001 \\ \hline 1111$$

NOT operation $(\neg x)$:

$\neg 0110$
1001



Statement: You can have free coffee if you are a senior citizen and it is Tuesday.

Step 1: Identify Propositions

- p: You are a senior citizen.
- *q*: It is Tuesday.
- r: You can have free coffee.

Step 2: Determine Logical Connectives

- AND is represented by \wedge .
- lacktriangle The conditional if-then is represented by ightarrow.

Step 3: Translate into Logical Symbols

$$(p \land q) \rightarrow r$$

Translating a Logical Statement (cont.)

Statement: You will pass the exam if you study hard or attend all the classes.

Step 1: Identify Propositions

- p: You study hard.
- q: You attend all the classes.
- r: You will pass the exam.

Step 2: Determine Logical Connectives

- OR is represented by ∨.
- \blacksquare The conditional if-then is represented by $\rightarrow.$

Step 3: Translate into Logical Symbols

$$(p \lor q) \to r$$

Translation Exercises

Exercise 1: Translate the following statement into logical symbols: If you drive over the speed limit, then you will receive a ticket.

Let:

- *p*: You drive over the speed limit.
- q: You will receive a ticket.

Translation:

$$p \rightarrow q$$

Translation Exercises

Exercise 2: Translate the following statement into logical symbols: You will not receive a ticket if you do not drive over the speed limit.

Let:

- *p*: You drive over the speed limit.
- q: You will receive a ticket.

Translation:

Translation Exercises

Exercise 3: Translate the following statement into logical symbols: You will receive a ticket if and only if you are driving blindly or over the speed limit.

Let:

- p: You are driving blindly.
- *q*: You drive over the speed limit.
- r: You will receive a ticket.

Translation:

$$r \leftrightarrow (p \lor q)$$

Equivalence

Definition: Two logical expressions are said to be **equivalent** if they have the same truth values for all possible combinations of truth values of their variables.

Example: Prove the equivalence of the expressions $p \to q$ and $\neg p \lor q$.

р	q	$\neg p$	p o q	$\neg p \lor q$
Т	Т	F	Т	Т
T	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Conclusion: Since the columns for $p \to q$ and $\neg p \lor q$ are identical, we conclude that:

$$p \rightarrow q \equiv \neg p \lor q$$

Logical Equivalence: Definition and Laws

Definition: Two propositions P and Q are said to be **logically equivalent** if they have the same truth value for every possible truth assignment.

EAST

$$P o (Q \vee \neg Q)$$
 is a tautology.

Important Logical Equivalence Laws:

■ Identity Law:

$$P \wedge \mathsf{True} \equiv P$$
 and $P \vee \mathsf{False} \equiv P$

■ Domination Law:

$$P \vee \mathsf{True} \equiv \mathsf{True}$$
 and $P \wedge \mathsf{False} \equiv \mathsf{False}$

■ Idempotent Law:

$$P \lor P \equiv P$$
 and $P \land P \equiv P$

Logical Equivalence: Laws

■ Double Negation Law:

$$\neg(\neg P) \equiv P$$

Commutative Law:

$$P \lor Q \equiv Q \lor P$$
 and $P \land Q \equiv Q \land P$

Associative Law:

$$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$$
 and $(P \land Q) \land R \equiv P \land (Q \land R)$

Distributive Law:

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

$$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$$

Logical Equivalence: Laws

■ De Morgan's Laws:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

 $\neg (P \lor Q) \equiv \neg P \land \neg Q$

Absorption Law:

$$P \lor (P \land Q) \equiv P$$
 and $P \land (P \lor Q) \equiv P$

Negation Laws:

$$P \vee \neg P \equiv \text{True}$$
 and $P \wedge \neg P \equiv \text{False}$

**Refer the book for more details about logical equivalence.

Proof Using Logical Equivalence Statement to Prove:

$$(P \wedge Q) \vee (\neg P) \equiv Q \vee \neg P$$

Step-by-step proof:

$$\begin{array}{c} (P \wedge Q) \vee \neg P \equiv (\neg P) \vee (P \wedge Q) & \text{(Commutative Law)} \\ \equiv (\neg P \vee P) \wedge (\neg P \vee Q) & \text{(Distributive Law)} \\ \equiv \mathsf{True} \wedge (\neg P \vee Q) & \text{(Negation Law: } \neg P \vee P \equiv \mathsf{True}) \\ \equiv \neg P \vee Q & \text{(Identity Law: True} \wedge X \equiv X) \end{array}$$

Conclusion:

$$(P \wedge Q) \vee \neg P \equiv \neg P \vee Q$$

Hence, the original statement is true using logical equivalence.

Proof Using Logical Equivalence Laws

Example: Prove that $(P \land Q) \rightarrow P$ is a tautology.

Step-by-step proof:

$$(P \land Q) \rightarrow P \equiv \neg (P \land Q) \lor P$$
 (Implication Law)
 $\equiv (\neg P \lor \neg Q) \lor P$ (De Morgan's Law)
 $\equiv \neg P \lor (P \lor \neg Q)$ (Associative Law)
 $\equiv \text{True} \lor \neg Q$ (Negation Law: $P \lor \neg P \equiv \text{True}$)
 $\equiv \text{True}$ (Domination Law: $\text{True} \lor X \equiv \text{True}$)

Since the final result is True, we conclude that $(P \land Q) \rightarrow P$ is a tautology.

Exercises on Logical Equivalence

Exercise 1: Prove the following equivalence:

$$(P \lor Q) \land \neg Q \equiv P$$

Exercise 2: Use logical equivalences to simplify:

$$\neg (P \land Q) \lor (\neg P \land R)$$

Exercise 3: Prove that:

$$(P \land Q) \rightarrow R \equiv \neg R \rightarrow \neg (P \land Q)$$

Exercise 4: Show that the following statement is a contradiction:

$$(P \wedge \neg P) \vee (Q \wedge \neg Q)$$