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Limitations of Propositional Logic WBTE

Lack of Expressiveness:

Propositional logic cannot express statements involving variables or
quantifiers. For example, statements like “All humans are mortal”
or “Some dogs are friendly” cannot be represented.

No Relations Between Objects:

It cannot express relationships between multiple entities, such as
“John is taller than Sarah.”

Scalability Issues:

Propositional logic needs a separate statement for each fact. When
there are many facts to represent, it becomes hard to manage. For
example, describing each person in a large group would require
many individual statements, making it difficult to work with on a
large scale.

No Quantifiers:

Propositional logic lacks quantifiers like “for all” (V) and “there
exists” (3). Statements involving generalization or existence
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Examples of Limitations in Propositional Logic ¥&lE"¢

Example 1: Representing People in a Group

m To express "Shanto is a student,” “Urmi is a student,” and " Wasim
is a student,” propositional logic requires separate statements:

Student_Shanto, Student_Urmi, Student_Wasim

m With 1000 students, 1000 statements would be needed, making it
hard to manage.
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Examples of Limitations in Propositional Logic ~M8IF¢
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Example 2: Expressing Universal Truths

B To represent “All dogs are friendly,” propositional logic requires a
statement for each dog:

Friendly_Dogl, Friendly_-Dog2, Friendly_Dog3, ...
m Predicate logic can simplify this as:

Vx (Dog(x) — Friendly(x))
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Examples of Limitations in Propositional Logic ~M8IF¢
(Contd.)

Example 3: Describing Relationships

m For statements like “John likes Mary” and "Alam likes Bithi,”
propositional logic needs unique statements for each pair:

Likes_John_Mary, Likes_Alam_Bithi
® Predicate logic allows us to express “likes” as a relationship:
Likes(x, y)

m This approach avoids listing every possible pair individually.

e —————————————————



EASI&"..
Predicate Logic (First-Order Logic) WEST 29
Predicate logic overcomes the limitations of propositional logic by
introducing:

m Objects and Predicates: Statements are constructed using

objects (e.g., John, Dog) and predicates (e.g., is mortal,
loves).

O Example: Loves(John, Mary) means “John loves Mary.”
m Quantifiers:

O Universal Quantifier (V): Used for statements true for all members
of a set.

Vx Human(x) — Mortal(x)

Meaning: “All humans are mortal.”

O Existential Quantifier (3): Used for statements where at least one
member of a set satisfies a condition.

Ix Dog(x) A Friendly(x)
Meaning: “There exists a dog that is friendly.”

e ————————————
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Complex Relationships in Predicate Logic BT

Predicate logic allows us to express complex relationships between
multiple objects, which is not possible in propositional logic. Here are
some examples:

® Taller(John, Mary) means “John is taller than Mary.”

m This relationship involves two objects (John and Mary) and the
predicate “Taller.”

® Parent(Alice, Bob) means “Alice is a parent of Bob.”
® Sibling(Bob, Sarah) means “Bob and Sarah are siblings.”

m Predicate logic allows us to define relationships between family
members clearly.

® OQwns(Alam, BookJava) means “Alam owns java Book.”

®m Owns (John, Car) means “John owns a car.”

e ————————————————————
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Relationships in Predicate Logic BT

® WorksFor (Emma, CompanyA) means “Emma works for
CompanyA.”

® Manages(Sarah, Emma) means “Sarah manages Emma."

®m Teaches(ProfSmith, Calculus) means “Professor Smith
teaches Calculus.”

®m Studies(StudentX, Calculus) means “Student X studies
Calculus.”
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Predicate logic, also known as First-Order Logic, consists of several
key components that allow it to represent complex statements and
relationships. Here are the main building blocks:
® Objects (Constants):
O Objects represent specific entities or items within a domain.
O Examples: John, Alice, Dogl, BookA
® Predicates:
O Predicates represent properties of objects or relationships between
objects.
O Notation: Predicate(Object) or Predicate(Objectl, Object2)
0 Examples: Human(John) means “John is a human”; Loves (John,
Mary) means “John loves Mary."
m Variables:
O Variables are placeholders that can represent any object in the domain.
O Notation: Typically denoted by lowercase letters such as x, y, z.

O Example: In Loves(x, Mary), x can represent any person who might
love Mary.

e —————————————
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Building Blocks of Predicate Logic WESJ&
® Quantifiers:

O Universal Quantifier (V): Asserts that a statement is true for all
objects in the domain.

Vx (Human(x) — Mortal(x))

Meaning: “All humans are mortal.”
O Existential Quantifier (3): Asserts that a statement is true for at
least one object in the domain.

Ix (Dog(x) A Friendly(x))

Meaning: “There exists a dog that is friendly.”
® Logical Connectives:

0 Connectives are used to form complex statements.
® Conjunction (A): And
B Disjunction (V): Or
B Negation (—): Not
® Implication (—): If-then

O Example: Human(x) A Mortal(x) means "X is both human and
mortal.”

-
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Domain in Predicate Logic HEST B

In predicate logic, the domain is the set of all possible objects that
variables in predicate statements can represent. The choice of domain
affects the truth value of statements, especially when using
quantifiers.
m Definition of Domain
O The domain is the collection of objects that variables can refer to in a
logical statement.
O The domain is often specified based on the context, such as “all
people,” “all students,” or “all natural numbers.”
® Example Domains and Their Impact on Truth Values
0 Example 1: Domain = {All people}
Predicate: Loves(x, y) - "x loves y."
B Statement: Vx 3y Loves(x,y)
B Meaning: "Every person loves someone.”
B Truth Value: True or false, depending on whether each person in the
domain has someone they love.
0 Example 2: Domain = {All natural numbers}
B Predicate: Even(x) - “x is an even number.”
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In predicate logic, a predicate is an expression that represents a
property of objects or a relationship between objects. It takes one or
more arguments (objects or variables) and returns true or false.
® Predicates (Valid):
O Human(John) - Represents the property " John is a human.”
O Loves(Alice, Bob) - Represents the relationship " Alice loves Bob."”
O GreaterThan(x, y) - Represents the relationship "x is greater than
y.
O Dog(D) - Represents the property "D is a dog.”
= Not Predicates (Invalid):
O John - This is simply a constant representing an object, not a
predicate.
O Human - Without any argument, it does not convey a complete
meaning (no specific object is described as human).
O Loves(Alice) - Predicates require the correct number of arguments;
"Loves” expects two arguments to complete the relationship.
O 3 + 4 - This is an arithmetic expression; it does not convey a

o iiﬁmﬁert‘ or relationshiﬁ that can be true or false.
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Predicates represent properties or relationships among objects. A
predicate P(x) assigns a truth value (true or false) to each x
depending on whether the property holds for x.

® The assignment is best viewed as a big table with the variable x
substituted for objects from the universe of discourse

Example:

m Let Student(x) denote a predicate where the universe of discourse
is people.

m Student(John) T  (if John is a student)
® Student(Ann) T  (if Ann is a student)
m Student(Jane) F  (if Jane is not a student)

e —————————
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Let P(x) be a predicate representing the statement:
“x is a prime number”

Determine the truth values for each statement below:

m P(2) T
= P(3) T
m P(4) F
= P(5) T
= P(6) F
m P(7) T
= P(8) F
= P(9) F
= P(11) T
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Let P(x) represent the following statements. Determine the truth

values:

1. P(x): “x is an even number”
m P(1) F

m P2 T

= P(3) F

mP4) T

= P(5) F
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Q(x): “x is a multiple of 3"
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Example: Let Q(x,y) denote “x +5 > y”

m Is Q(x,y) a proposition? No! - Q(x, y) depends on the values of x
and y and does not have a definite truth value without them. - It
is a predicate, not a proposition.

® s Q(3,7) a proposition? Yes, it is true.

0 Truth Values:
B Q(3,7):T
m Q(1,6): F
®Q(2,2): T

m |s Q(3,y) a proposition? No! We cannot say if it is true or false

without a specific value for y.

e ———————————
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Compound statements combine simpler statements using logical
connectives.

Examples:

® Student(Lucy) A Student(Jack)

O Translation: “Both Lucy and Jack are students”
O Proposition: Yes

® Country(Dhaka) V River(Dhaka)

O Translation: “Dhaka is a country or a river”
O Proposition: Yes

m CSE-major(x) — Student(x)
O Translation: “If x is a CSE-major, then x is a student”
O Proposition: No (depends on the value of x)

e ——————————
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More examples of compound statements using logical connectives.
® Tall(Alice) A Athlete(Alice)

O Translation: “Alice is tall and an athlete.”
O Proposition: Yes

® Animal(Dog) V Plant(Dog)

0 Translation: “A dog is an animal or a plant.”
O Proposition: Yes

m Car(x) — Vehicle(x)
O Translation: “If x is a car, then x is a vehicle.”
0 Proposition: No (depends on the value of x)
® Rainy(yesterday) V Sunny(today)

O Translation: “It was rainy yesterday or sunny today.”
O Proposition: Yes

e ———————————
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The universal quantification of P(x) is the proposition:

“P(x) is true for all values of x in the domain of discourse.”

® The notation Vx P(x) denotes the universal quantification of P(x),
meaning “for every x, P(x) is true.”

Example:

m Let P(x) denote x > x — 1.

® What is the truth value of Vx P(x)?

m Assume the universe of discourse of x is all real numbers.

® Answer: Since every real number x is greater than x — 1, Vx P(x)
is true.

-
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A universal quantifier Vx P(x) claims that P(x) is true for every x in
the domain. A single counterexample is enough to disprove it.
Example 1:

m Let P(x) denote “x? > x".
® Assume the domain of x is all real numbers.

= Counterexample: If x = 0.5, then 0.5 = 0.25, which is not
greater than or equal to 0.5.

® Therefore, Vx P(x) is false.
Example 2:
Let Q(x) denote “x+1 > x".

Assume the domain of x is all real numbers.

There is no counterexample, since x + 1 is always greater than x.
Therefore, Vx Q(x) is true.

e ———————
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Universally Quantified Statements WEST 29

Example 1: CSE-major(x) — Student(x)

® Translation: “If x is a CSE-major, then x is a student.”
m Proposition: No (depends on the value of x)

Example 2: Vx (CSE-major(x) — Student(x))

m Translation: “For all people, if a person is a CSE-major, then
she/he is a student.”

® Proposition: Yes (the statement holds universally across all values
of x)



EAst .-
Existential Quantification WEST 7" 2=¢

&>

X4

The existential quantification of P(x) is the proposition:

“There exists an element in the domain of discourse such that P(x) is
true.”

® The notation 3x P(x) denotes the existential quantification of
P(x), meaning “there is an x such that P(x) is true.”

Example:

Let T(x) denote x > 5, where x is a real number.
What is the truth value of 3x T(x)?

Answer: Since 10 > 5 is true, there exists an x (e.g., x = 10) such
that T(x) holds.

Therefore, 3x T(x) is true.

e ————————————
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The existential quantifier Ix P(x) states that there is at least one x in
the domain for which P(x) is true.

Example 1:

® Let P(x) denote x> = 4 with x from real numbers.

® Truth Value of 3x P(x): True, since x = 2 or x = —2 satisfies
x2 =4,

Example 2:

® Let Q(x) denote x < 0 where x is from the natural numbers.

® Truth Value of 3x Q(x): False, since no natural number is less
than 0.

Example 3:
m Let R(x) denote x + 3 = 7 with x from the integers.
® Truth Value of 3x R(x): True, as x =4 makes x +3 =7.

e ———————————————
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Statements About Groups of Objects BT

Example 1:
m CSE-EWU-graduate(x) A Honor-student(x)

® Translation: “x is a CSE-EWU graduate and x is an honor
student.”

® Proposition: No (depends on x, cannot be determined for all x)
Example 2:
® Jx (CSE-EWU-graduate(x) A Honor-student(x))

® Translation: “There exists a person who is both a CSE-EWU
graduate and an honor student.”

® Proposition: Yes (since we can find such an x)

e ———————————
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More Examples: Statements About Groups of Obf@idts®

Example 3:

® Employee(x) A Works-at(x, Company A)

® Translation: “x is an employee and x works at Company A."

® Proposition: No (depends on x, cannot be determined for all x)

Example 4:

® Jx (Employee(x) A Works-at(x, Company A))

® Translation: “There exists a person who is an employee and works
at Company A."

® Proposition: Yes (since such an x could exist)

Example 5:

® Vx (Student(x) — Attends(x, University B))

® Translation: “For all x, if x is a student, then x attends University
B.H

® Proposition: No (depends on x, not necessarily true for all x)

e ————————————
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When are Vx P(x) and 3x P(x) true or false?

Suppose the universe of discourse consists of x1, x2,...,xy. Then:

® Vx P(x) is true if P(x1) A P(x2) A--- A P(xn) is true.
® dx P(x) is true if P(x1) V P(x2) V---V P(xn) is true.
Summary Table:

Statement When True?

Vx P(x) P(x) true for all x

dx P(x) | There exists some x for which P(x) is true.
Statement When False?

Vx P(x) | There exists an x where P(x) is false.

dx P(x) P(x) is false for all x.

e —————————
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Sentence:

m All EWU students are smart.
Translations:

m Case 1: Assume the domain of discourse is EWU students.
O Translation: Vx Smart(x)

m Case 2: Assume the universe of discourse is all students.
O Translation: Vx (at(x, EWU) — Smart(x))

m Case 3: Assume the universe of discourse is all people.
O Translation: Vx (student(x) A at(x, EWU) — Smart(x))
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UNIVERSITY

Sentence:
m Someone at NSU is smart.
Translations:

m Case 1: Assume the domain of discourse is all NSU affiliates.
O Translation: Ix Smart(x)

m Case 2: Assume the universe of discourse is all people.
O Translation: 3x (at(x, NSU) A Smart(x))

m Case 3: Assume the universe of discourse is all university students.

O Translation: 3x (student(x) A at(x, NSU) A Smart(x))
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Sentence:
®m There is a vehicle that is electric.
Translations:

m Case 1: Assume the domain of discourse is all electric vehicles.
O Translation: 3x ElectricVehicle(x)

m Case 2: Assume the universe of discourse is all vehicles.
O Translation: 3x (Vehicle(x) A Electric(x))

m Case 3: Assume the universe of discourse is all type of
transportation.

O Translation: 3x (Transportation(x) A Vehicle(x) A Electric(x))
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Universal Statements:
® Using Implications:
o "All S(x) are P(x)"
B Translation: Vx(S(x) — P(x))
0 "No S(x) is P(x)"
B Translation: Vx(S(x) — =P(x))
Existential Statements:
® Using Conjunctions:
O "Some S(x) are P(x)"
B Translation: 3x(S(x) A P(x))
0 "Some S(x) are not P(x)"
B Translation: 3x(S(x) A =P(x))

-aefx
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®m More than one quantifier may be necessary to capture the meaning
of a statement in predicate logic.

Example:

m Sentence: “Every real number has its corresponding negative.”
= Translation:
O Assume:

B A real number is denoted as x and its negative as y.
B A predicate P(x, y) denotes: x + y = 0.

O Formal Expression: Vx3dy P(x,y)
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®m More than one quantifier may be necessary to capture the meaning
of a statement in predicate logic.

Example:

m Sentence: “There is a person who loves everybody.”
® Translation:
O Assume:

B Variables x and y denote people.
B A predicate L(x,y) denotes: “x loves y".

O Formal Expression: 3xVy L(x,y)



Enst (-
Order of Quantifiers WEST E2=¢

Order of Nested Quantifiers:

® The order of nested quantifiers matters when the quantifiers are of
different types.

® Vx3dy L(x, y) is not the same as JyVx L(x, y).
Example:
® Assume L(x,y) denotes: "x loves y”
m Vx3y L(x,y):
O Translation: "Everybody loves somebody.”
m JyVx L(x,y):
0 Translation: " There is someone who is loved by everyone.”

The meanings of the two expressions are different due to the order of
quantifiers.

e ——————————
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® The order of nested quantifiers does not matter if the quantifiers

are of the same type (both universal or both existential).
Example:

m Statement: "For all x and y, if x is a parent of y, then y is a child
of x.”
® Assume:

O Parent(x,y) denotes: "x is a parent of y”
0 Child(x,y) denotes: "x is a child of y”

® Two equivalent translations:
0 VxVy (Parent(x,y) — Child(y, x))
O VyVx (Parent(x, y) — Child(y, x))

The order of universal quantifiers (V) does not affect the meaning in
this context.

e —————————
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Suppose:

® Variables x, y denote people

® [(x,y) denotes "x loves y"

Translations:

®m Everybody loves Raymond:
Vx L(x, Raymond)

= Everybody loves somebody:
Vx 3y L(x,y)

® There is somebody whom everybody loves:
dy Vx L(x,y)

® There is somebody who Raymond doesn’t love:
Jy —L(Raymond, y)

® There is somebody whom no one loves:
dy Vx = L(x,y)

e ——————————
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® Every student likes some teacher.
Translation: Vx (Student(x) — 3y Teacher(y) A Likes(x, y))
Explanation: For each student, there exists a teacher that the
student likes.

® There is a person who likes all students.
Translation: 3x Vy (Student(y) — Likes(x, y))
Explanation: There exists someone who likes every student.

® Some students don’t like any teacher.
Translation: 3x (Student(x) A Vy (Teacher(y) — —Likes(x, y)))
Explanation: There is a student who dislikes all teachers.
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English Statement:

Nothing is perfect.

Translation:

— 3x Perfect(x)Alternative Expression:
Everything is imperfect.

Vx = Perfect(x)
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English Statement:

“There is no student who failed the exam.”
Translation:

— Ix Failed(x)

Alternatively:

Vx — Failed(x)

English Statement: "Everyone passed the exam.”

Translation: Vx Passed(x)
English Statement: "There is a student who passed the exam.”

Translation: 3x Passed(x)

e ———————————
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English Statement:
“Nothing is perfect.”
Translation:

— Ix Perfect(x)

Another way to express the same meaning:
“Everything is imperfect.”

Translation:

Vx = Perfect(x)

—3x P(x) is equivalent to Vx = P(x)
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Negation | Equivalent
-3x P(x) | Vx—=P(x)
—Vx P(x) | 3Ix-P(x)
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Negation of Quantified Statements (DeMorgan's Y81 F"

Laws)

Negation Equivalent
—3x (x* = 4) Vx (x% # 4)
—Vx(x+2>5) | Ix(x+2<5)

® —Jx (x?> = 4) means “There does not exist an x such that x> = 4.
® The negation would be: "For all x, x> # 4."

B —Vx(x 4+ 2 > 5) means “It is not true that for all x, x +2 >5."
® The negation would be: “There exists an x such that x +2 < 5."



