
Introduction to Proof in Discrete Mathematics

Dr. Mohammad Salah Uddin

Associate Professor
Dept. of CSE

East West University

November 26, 2024



What is a Proof?

■ A proof is a logical argument that verifies the truth of a
mathematical statement.

■ In discrete mathematics, proofs are used to validate statements
about numbers, sets, graphs, and algorithms.
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Types of Proof Techniques

There are several common techniques used in mathematical proofs:

1. Direct Proof
□ Proves a statement by assuming the hypothesis and logically deriving

the conclusion.
□ Example: Proving that the sum of two even numbers is even.

2. Proof by Contradiction
□ Assumes the negation of the statement and shows that this leads to a

contradiction.
□ Example: Proving that

√
2 is irrational.

3. Proof by Induction
□ Used to prove statements about integers, typically involving sequences.
□ Two steps: Base Case and Inductive Step.

4. Proof by Counterexample
□ Demonstrates that a statement is false by providing a single example

that contradicts it.
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Direct Proof

■ A direct proof demonstrates the truth of a statement by logically
deriving the conclusion from the given information.

■ It involves assuming the hypothesis is true and using logical steps
to arrive at the conclusion.

■ Commonly used for statements in the form:

If P, then Q.
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Direct Proof: Example 1

Theorem: The sum of two even numbers is even.

Proof.
Let a and b be even numbers. We can express the even numbers as,
there exist integers m and n such that:

a = 2m and b = 2n.

Then, the sum is:

a+ b = 2m + 2n = 2(m + n).

Since m + n is an integer, because the sum to two integers is and
integer. So, a+ b is even.
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Direct Proof: Example 2

Theorem: The product of two odd numbers is odd.

Proof.
Let a and b be odd numbers. By definition of odd numbers, there
exist integers m and n such that:

a = 2m + 1 and b = 2n + 1.

Then, the product is:

a×b = (2m+1)(2n+1) = 4mn+2m+2n+1 = 2(2mn+m+n)+1.

Since 2mn +m + n is an integer, a× b is odd.
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Direct Proof: Example 3

Theorem: The square of an even number is even.

Proof.
Let n be an even number. By definition, there exists an integer k
such that:

n = 2k .

The square of n is:

n2 = (2k)2 = 4k2 = 2(2k2).

Since 2k2 is an integer, n2 is even.
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Direct Proof: Example 4

Theorem: The square of an odd number is odd.

Proof.
Let n be an odd number. By definition, there exists an integer k such
that:

n = 2k + 1.

The square of n is:

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since 2k2 + 2k is an integer, n2 = 2m + 1, where m is an integer.
Thus, n2 is odd.
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Summary of Direct Proof

Direct proof involves starting from known information (hypothesis)
and applying logical reasoning to reach a conclusion.
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Proof by Contraposition

■ In a proof by contraposition, we prove a statement of the form:

If P, then Q

by proving its contrapositive:

If ¬Q, then ¬P.

■ The contrapositive is logically equivalent to the original statement.

■ This method is often easier than direct proof, especially when
assuming Q false leads to a clearer argument.

10 of 34



Contraposition: Example 1

Theorem: If n2 is even, then n is even.

Proof.
We will prove this by contraposition. The contrapositive of the
statement is:

If n is odd, then n2 is odd.

Assume n is odd. Then n = 2k + 1 for some integer k .

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since 2k2 + 2k is an integer, n2 is odd. Thus, if n2 is even, n must be
even.
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Contraposition: Example 2
Theorem: If x + y is odd, then one of x or y is odd.

Proof.
We will prove this by contraposition. The contrapositive of the
statement is:

If both x and y are even, then x + y is even.

Assume both x and y are even. Then, there exist integers m and n
such that:

x = 2m and y = 2n.

Therefore:
x + y = 2m + 2n = 2(m + n).

Since m + n is an integer, x + y is even. Hence, if x + y is odd, at
least one of x or y must be odd.
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Contraposition: Example 3

Theorem: If n2 is not divisible by 3, then n is not divisible by 3.

Proof.
We will prove this by contraposition. The contrapositive of the
statement is:

If n is divisible by 3, then n2 is divisible by 3.

Assume n is divisible by 3. Then n = 3k for some integer k .

n2 = (3k)2 = 9k2 = 3(3k2).

Since 3k2 is an integer, n2 is divisible by 3. Thus, if n2 is not divisible
by 3, then n is not divisible by 3.
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Proof by Contradiction

Method: In a proof by contradiction, we assume the negation of the
statement we want to prove and show that this assumption leads to a
contradiction. This contradiction implies that our original assumption
must be false, and therefore the statement we wanted to prove is true.
General Steps:

1. Assume that the statement to be proved is false.

2. Show that this assumption leads to a contradiction.

3. Conclude that the assumption must be false, and thus the original
statement is true.
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Contradiction: Example 1

Theorem: The sum of two odd numbers is even.
Proof:

■ Assume, for the sake of contradiction, that the sum of two odd
numbers is odd.

■ Let the two odd numbers be 2m + 1 and 2n + 1, where m and n
are integers.

■ The sum of these two numbers is:

(2m + 1) + (2n + 1) = 2(m + n + 1).

This expression is clearly even, which contradicts the assumption that
the sum is odd. Therefore, the sum of two odd numbers must be
even.
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Contradiction: Example 2

Theorem: The product of two even numbers is even.
Proof:

■ Assume, for the sake of contradiction, that the product of two
even numbers is odd.

■ Let the two even numbers be 2m and 2n, where m and n are
integers.

The product of these two numbers is:

(2m)(2n) = 4mn.

Clearly, this is even because it is divisible by 2. This contradicts the
assumption that the product is odd. Therefore, the product of two
even numbers must be even.
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Contradiction: Example 3

Theorem: The sum of an even number and an odd number is odd.
Proof:

■ Assume, for the sake of contradiction, that the sum of an even
number 2m and an odd number 2n + 1 is even.

The sum is:
(2m) + (2n + 1) = 2(m + n) + 1.

This is clearly odd, not even. Therefore, our assumption is false.
Hence, the sum of an even number and an odd number is odd.
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Contradiction: Example 4
Theorem: There is no integer x such that x2 = 3.
Proof:

■ Assume, for the sake of contradiction, that there is an integer x
such that x2 = 3.

Then x2 = 3, and we need to check if any integer satisfies this
equation.
Checking the possible integer values of x , we find:

x = ±1 ⇒ x2 = 1 (not 3).

x = ±2 ⇒ x2 = 4 (not 3).

x = ±3 ⇒ x2 = 9 (not 3).

Clearly, no integer satisfies x2 = 3.
Therefore, there is no integer x such that x2 = 3.
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Proof by Cases

Definition: Proof by cases is a technique where we divide a proof
into different cases and prove the statement separately for each case.
It is used when a statement can be true in several different ways, each
of which needs to be verified.
Procedure:

■ Identify all possible cases.

■ Prove the statement for each case.

■ Conclude the proof after all cases are covered.
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When to Use Proof by Cases

Use proof by cases when:

■ There are multiple possible scenarios for the statement.

■ The conditions for the statement change depending on different
situations.

■ A direct proof is complicated or infeasible.
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Cases: Example 1

Theorem: Any integer n is either even or odd.
Proof: We will prove this by considering two cases.
Case 1: n is even.
By definition, if n is even, then there exists an integer k such that:

n = 2k .

Since n = 2k, n is even by definition.
Case 2: n is odd.
If n is odd, then there exists an integer k such that:

n = 2k + 1.

Since n = 2k + 1, n is odd by definition.
Since every integer n is either even or odd, the statement is proved.
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Cases: Example 2
Theorem: The sum of two integers is even if and only if both
integers have the same parity (both even or both odd).
Proof: We will prove this by considering all possible cases for the
parity of the integers.
Case 1: Both integers are even.
Let a = 2m and b = 2n, where m and n are integers. The sum is:

a+ b = 2m + 2n = 2(m + n),

which is even.
Case 2: Both integers are odd.
Let a = 2m + 1 and b = 2n + 1, where m and n are integers. The
sum is:

a+ b = (2m + 1) + (2n + 1) = 2(m + n + 1),

which is also even.
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Cases: Example 3

Case 3: One integer is even and the other is odd.
Let a = 2m and b = 2n + 1, where m and n are integers. The sum is:

a+ b = 2m + (2n + 1) = 2(m + n) + 1,

which is odd.
Conclusion: The sum of two integers is even if and only if both
integers have the same parity.
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Proof by Cases: |xy | = |x | · |y |

Theorem: Prove that for all real numbers x and y , we have the
identity:

|xy | = |x | · |y |.

Proof by Cases:
■ Case 1: x ≥ 0 and y ≥ 0

□ |x | = x and |y | = y
□ |xy | = x · y
□ |x | · |y | = x · y

■ Case 2: x ≥ 0 and y < 0
□ |x | = x and |y | = −y
□ |xy | = |x · (−y)| = −x · y
□ |x | · |y | = x · (−y) = −x · y
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Proof by Cases: |xy | = |x | · |y |

■ Case 3: x < 0 and y ≥ 0
□ |x | = −x and |y | = y
□ |xy | = | − x · y | = −x · y
□ |x | · |y | = (−x) · y = −x · y

■ Case 4: x < 0 and y < 0
□ |x | = −x and |y | = −y
□ |xy | = | − x · (−y)| = x · y
□ |x | · |y | = (−x) · (−y) = x · y

■ Case 5: x = 0 or y = 0
□ If x = 0, then |xy | = 0 and |x | · |y | = 0.
□ If y = 0, then |xy | = 0 and |x | · |y | = 0.

Conclusion: In all cases, |xy | = |x | · |y |. Therefore, the proof is
complete.
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Summary of Proof by Cases

■ Proof by cases is used when there are multiple scenarios to
consider.

■ We divide the problem into separate cases and prove each one.

■ Once all cases are proven, the overall statement is concluded.

Remember: Each case must cover all possible outcomes, and no case
can be overlooked.
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Proof of Equivalences

We want to prove p ⇐⇒ q

■ Statements: p if and only if q

■ Equivalence: p ⇐⇒ q is equivalent to (p → q) ∧ (q → p)

■ Note: Both implications must hold.
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Example: Proof of Equivalences

Integer is Odd if and Only if n2 is Odd
Proof of p → q:

■ Statement: If n is odd, then n2 is odd.

■ Direct Proof:

■ Suppose n is odd. Then n = 2k + 1, where k is an integer.

■ Compute n2:

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

■ Therefore, n2 is odd.
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Example: Proof of Equivalences

Integer is Odd if and Only if n2 is Odd
Proof of q → p:

■ Statement: If n2 is odd, then n is odd.

■ Indirect Proof: Use the contrapositive.

■ Contrapositive: If n is even, then n2 is even.

Proof:

■ Suppose n is even. Then n = 2k , where k is an integer.

■ Compute n2:
n2 = (2k)2 = 4k2 = 2(2k2).

■ Therefore, n2 is even.

Since the contrapositive holds, the implication q → p is true.
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Conclusion: Proof of Equivalences

■ Statement: Integer is Odd if and Only if n2 is Odd

■ Since both p → q and q → p have been proven true, the
equivalence is true:

n is odd ⇐⇒ n2 is odd.
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Example: Divisibility by 6

Statement: A number is divisible by 6 if and only if it is divisible by
both 2 and 3.

■ (1) Direct Proof of p → q: If a number is divisible by 6, then it
is divisible by both 2 and 3.

■ (2) Direct Proof of q → p: If a number is divisible by both 2 and
3, then it is divisible by 6.
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Proof of p → q

Assume the number is divisible by 6.

■ If a number is divisible by 6, it can be written as n = 6k, where k
is an integer.

■ Since 6 = 2× 3, the number is divisible by both 2 and 3.

Hence, the number is divisible by both 2 and 3, proving p → q.
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Proof of q → p

Assume the number is divisible by both 2 and 3.

■ If a number is divisible by 2, it can be written as n = 2m.

■ If a number is divisible by 3, it can be written as n = 3m.

■ Since both 2 and 3 divide n, their least common multiple (LCM) is
6. Thus, n is divisible by 6.

Hence, the number is divisible by 6.
Since both p → q and q → p have been proven, the equivalence
holds:

A number is divisible by 6 ⇐⇒ It is divisible by both 2 and 3.

33 of 34



Next Slide

Mathematical Induction
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