
Java File Handling Overview

Dr. Mohammad Salah Uddin

May 3, 2025



Introduction

Java provides the java.io package for file I/O operations. Here are

some common tasks we can accomplish with Java file handling:

• Reading from a File: We can read data from files using classes

like FileInputStream, FileReader, BufferedReader, etc.

• Writing to a File: Writing data to files is achieved using

classes like FileOutputStream, FileWriter, BufferedWriter,

etc.

• Creating and Deleting Files and Directories: We can create,

delete, and manage files and directories using the File class.

1



Introduction (Con’t)

Java provides the java.io package for file I/O operations. Here are

some common tasks we can accomplish with Java file handling:

• Checking File and Directory Information: The File class

provides methods to check various attributes of files and

directories, such as existence, size, last modified date, etc.

• Working with Binary Data: Java provides classes like

DataInputStream and DataOutputStream for reading and

writing primitive data types in binary format.

2



Key Classes and Methods

Here are some key classes and methods we’ll use for file handling

in Java:

• java.io.File

• File(String pathname): Creates a new File instance with the

given path.

• boolean exists(): Checks if the file or directory exists.

• boolean isFile(), boolean isDirectory(): Checks if the File

instance represents a file or directory.

• String[] list(): Returns an array of filenames in the directory

represented by the File instance.

3



Key Classes and Methods (con’t)

Here are some key classes and methods we’ll use for file handling

in Java:

• java.io.FileReader and java.io.FileWriter

• FileReader(String fileName), FileWriter(String fileName):

Creates file readers and writers.

• int read(): Reads a single character from the reader. Returns

-1 at end of file.

• int read(char[] buffer): Reads characters into a buffer.

• void write(int c), void write(char[] cbuf): Writes characters

to the writer.

4



Buffered Reader and Writer

These classes provide buffering for character input and output

streams, improving performance.

• java.io.BufferedReader

• Buffered character input stream.

• Efficiently reads text from a character-input stream.

• readLine() reads a line of text.

• java.io.BufferedWriter

• Buffered character output stream.

• Efficiently writes text to a character-output stream.

• newLine() writes a platform-specific line separator.

5



FileInputStream and FileOutputStream

Used for reading from and writing to binary files.

• java.io.FileInputStream

• Reads bytes from a file.

• Provides low-level access to file contents.

• read(byte[] buffer) reads bytes into a buffer.

• java.io.FileOutputStream

• Writes bytes to a file.

• Provides low-level access to file contents.

• write(byte[] buffer) writes bytes from a buffer.

6



DataInputStream and DataOutputStream

Used for reading and writing primitive data types in binary format.

• java.io.DataInputStream

• Reads primitive data types.

• Reads from an underlying input stream.

• readInt(), readDouble(), etc.

• java.io.DataOutputStream

• Writes primitive data types.

• Writes to an underlying output stream.

• writeInt(), writeDouble(), etc.

7



Exception Handling

File handling operations can throw various exceptions, such as

IOException. It’s important to handle exceptions properly to

ensure that our code is robust and handles unexpected scenarios.

• Always enclose file operations in try-catch blocks.

• Provide user-friendly error messages to aid debugging.

8



Conclusion

• Java file handling is fundamental for diverse applications.

• Proper exception handling ensures robust and reliable

programs.

• Always close files after reading/writing to prevent resource

leaks.

9


